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Phase diagrams for the simple-cubic Ising lattice with 
re-entrant ferromagnetism 

L T6th and M T6thov.4 
pepanmerit of Theoretical Physics and Geophysics, hcaculty of Natural sciences, P J 
Safarik UniverSity, Moyrnwa 16,041 54 Kcijce, Crechmlwakia 

Reseived 25 February 1992. in final form 8 June 1992 

AbstracL Using the hnitecluster approximation and renonna&ation rechnique we 
study the spin-; king model for a simplecubic lattice with nearest-neighbour random 
inletactions We consider nearest-neighbour femmagnaic exchange interactions 3 with 
mncenuation I - p and exchange interactions D 3 ( 1 0 1  < I )  with concentration p. The 
phase diagrams were obtained for this model. They show r e a t r a n t  behaviour in cenain 
ranges of the concentration p and different a. 

1. Introduction 

The critical properties of spin-; Ising models with nearest-neighbour random 
exchange interactions have been studied in recent years. These studies have 
considered antiferromagnetic impurities, Le. models with competing interactions and 
thus frustration. Using two different approximate methods the square lattice ( z  = 4) 
Ising model was studied by Benayad ef a1 (19%). Similar results for the honeycomb 
lattice ( z  = 3) were obtained by T6th and T6thovA (1991). Using the stochastic 
lattice model (Handrich 1969), phase diagrams for z = 3, 4, 6 lattices with a k e d  
concentration p = 0.5 were studied by BobAk and JaSEur (1990). The common result 
of previous papers is that the phase diagrams predict the existence of reentrant 
behaviour, i.e. two-phase transitions at finite temperatures, in certain ranges of the 
concentration p and different a. 

The purpose of this paper is to show that re-entrant behaviour exists also for the 
simple-cubic lattice ( z  = 6), which has not been confirmed previously (BobAk and 
JaSCur 1990). 

We shall study this problem using two different approximate methods. The first 
method is the finite-cluster approximation based on an extension of Callen’s identity 
and on the introduction of differential operators into the exact identity for a cluster 
of one or two neighbouring spins (Honmura and Kaneyoshi 1979, BobAk and JaSEur 
1986). The second method is similar to phenomenological renormalization based on 
the comparison of systems of different finite sizes (Nightigale 1976, Indekeu el a1 
1982). 
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2. The theory and results 

We consider the ferromagnetic simple-cubic lattice with the reduced Hamiltonian 

L Tbth and M Tbthovi 

OH = - l i j s i s j  t 1.3 . .  = P J . .  '3 = (ICgT)-' (1) 
(4j) 

where .si = 33, Jij is the exchange interaction between spins at sites i and j, 
and the summation runs over all neighbouring pairs. The reduced nearest-neighbour 
interactions t .. are assumed to be independent random variables with the distribution 
(Wolff and Z&am 1985) 

P ( t i j )  = p 6 ( t i j  - 1 )  + (1  - P)S(tij -a t )  (2) 

where t = p J ,  IQ[ < 1 and 0 < p < 1. Thus, if a > 0, all interactions are 
ferromagnetic and there is no frustration; if (x = 0, we have a bond-diluted model; if 
0 < 0, same interactions are antiferromagnetic and there is frustration. 

21. One-spin cluster approximation 
We consider a particular spin si; then the thermal average according to Callen's 
(1963) identity gives 

(si) = (tanh hi) 

where h; = 
Using the d~fferenttal operator method (Honmura and Kaneyoshi 1979), averaging 

the last equation over the random interactions (2) (denoted by (. . .)J and neglecting 
correlations we obtain 

tijsr and z is the coordination number. 

m = ( A  + mB)" tanh ZI,=~ 
where 

(3) 

A = pcosh(tD,) + (1 - p)cosh(aiD,) 

m = 

linearize (3). Then the critical temperature lines are determined by the equation 

B = psinh(fD,) + (1 - p)sinh(atD,) 

is the average magnetization and D, = a/ax is the differential operator. 
Close to the critical temperature T, where the magnetization m -* 0, we can 

1 = zA2-IBtanhrl,=,. 

For the simple-cubic lattice ( z  = 6)  we obtain 

21 

The coefficients a, depend on p ,  and the coefficients d, depend on a only. They 
are given in appendix 1. The phase diagrams in the p-t;' plane, for different 
values of a, calculated from equation (4), are represented in figure 1. In accordance 
with these calculations there is re-entrant behaviour for the ranges 0 > a > -0.2, 
-0.2 > a > -0.24 and - 4  > a > -0.45. 
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Figure 1. Phase diagrams obtained from the one-spin cluster approximation, 

2.2 Two-spin cluster approximation 

Previous calculations can be extended to the two-spin cluster approximation (see, e.g., 
Bobik et ui (1989), and references therein). We have 

sinh(h, + h j )  
cosh(h, + h j )  t exp(-2tij)cosb(hi - h j )  

$(Si + Sj) = 

where 

(5 )  

I - 1  *-1 

h; = t i k s k  hj = t j , s r .  
k ( # i , j )  l(#i,j) 

We can take the configurational average of equation (5) using distributions 
analogous to (2) for l i k  and til. Within the framework of the differential operator 
method it is convenient to make the coordinate transformations (MockovEiak 1991) 

z = u + v  y = u - - 2 )  

and 

a D , = D , - D  = -  
y all y d v '  

a D , = D , + D  = -  

Then, neglecting correlations, we have 
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Figure 2. Phase diagrams obtained from the twospin cluster approximation. 

where 

A = pmh(tD,)  + (l-p)cosh(atD,) B = pSinh(tD,) + ( l -p)shh(atD,)  
C = pmh( tD, )  + (1 - p) cnsh(atD,) 
f , ( u , u )  =psinh(u+v)/[cosh(u+ u)+exp(-2t)cosh(u-u)] 

D = psinh(iD,) + ( I  - p) sinh(atD,) 

+(l-p)sinh(u+u)/[cosh(u+ ~)+exp(-2at)cosh(u-u)] .  (7) 

We again need the critical temperature equation only, so that we can linearize (6). It 
follows that 

1 = 2(z - l )Az-ZBCz-’f , (u,u)~u=o, .=o 

= Z(z - l )A’- ’C”-ZDf~(~ ,u)~u=U,u=o.  

For the simple-cubic lattice ( z  = 6). by performing very tedious calculations, we 
obtain 

where 

f:(%u) = ![f,(%.) + f J . 7  -)I 
and the function f , ( u , u )  is given in (7). The coefficients b, and c, depend on p, 
and the coefficients e, depend on a only. They are given in appendix 2 

The phase diagrams in the pt;‘ plane for different values of a, calculated from 
equation (S), are represented in figure 2. In accordance with these calculations there 
is reentrant behaviour for the ranges 0 > a > -0.18, -0.2 > a > -0.23 and 
- $  > 0: > -0.43. 
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23. Phenomenological renormalization approxintation 

We can apply the renormalization group technique in the framework of the 
phenomenological renormalization to our problem (Benayad et a1 1988). Using the 
one-spin result (4) and the WO-spin cluster result (S), we obtain the recursion relation 

21 18 18 

3 C a , t a ~ ( d , t , )  = i CCbhClf:(ekt,,e,t,) (9) 
n=l k = l  k 1  . 

where the coefficients an and d, and the coefficients b,, c, and eb are given in 
appendix 1 and appendix 2, respectively. 

The phase diagrams in the pl;' plane for different values of a, calculated 
from equation (9), are represented in figure 3. In accordance with our calculations 
there is reentrant behaviour for the ranges 0 > a > -0.07, -0.14 > a > -0.17, 
-0.2 > a > -0.25 and -$ > a > -0.78. 
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Figure 3. Phase diagrams obrained from the phenomenological renormalizarion 
approximar ion. 

3. Discussion 

The phase diagrams for all three cases show that, for non-frustrated models a > 0, 
there is always just one phase transition at a finite critical semperature T c ( p , m )  = 
( J / k & ; l ( p ,  a) > 0 from the disordered phase to the ordered ferromagnetic phase. 
At a = 0 we have the bond-diiuted model, which at zero temperature exhibits a 
transition at the percolation threshold p'. For frustrated models a < 0, and for 
certain ranges of a we have re-enbant behaviour, where two critical temperatures 
occur. We can see some kind of regularity in the ranges of re-entrant behaviour. 
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Two important characteristics of the phase diagrams, namely the reduced critical 
temperatures t;’ (for p = 1, ordered phase) and the percolation thresholds p* 
(a = 0, ‘bond problem’), for our approximations are shown in table 1. No exact 
value for any 3D lattice is known. So, numerical values were obtained by the series 
expansion (SE) method (Sykes and Essam 1964). The critical value t;’ was taken 
from the work of Domb (1974). In randomly diluted magnetic systems (‘site problem’) 
for the simple-cubic lattice, within the framework of the one-spin cluster and two- 
spin cluster approximations only, the same values for percolation thresholds were 
obtained (Bobak and Karaba (1987), and references therein). It s e e m  that finite- 
cluster approximations do not distinguish between the ‘bond problem’ and the ‘site 
problem’. Also, as distinguished from the z = 3 and z = 4 lattices (Benayad er nf 
1988, T6th and T6thoVa 1991), numerical values for percolation thresholds ‘decrease’ 
in our case (z  = 6) towards the SE value (from the one-cluster to the renormalization 
approximation). We should also mention that the phenomenological renormalization 
approximation substantially improves our solutions towards the SE value. 

Table 1. Values of the crilical temperature and the percolation threshold. 

0.2929 0.2902 0.2719 0.247 

This problem within the framework of the two-spin cluster approximation and for 
only the concenaation p = 0.5 was studied by Bob6k and JaSEur (1990). Re-entrant 
behaviour was not obtained in this special case. 

In ow more general approach the existence of re-enuant behaviour in disordered 
systems with a simple-cubic lattice was confirmed. The purpose of this paper was not 
to obtain very precise numerical results but to determine the quantitative features of 
the model. 
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Appendix 1 

The coefficients in equation (4) are given explicitly below. 
The a coefficients are as follows: 
a, = p6; a 2 - - (1 - P ) ~ ;  a3 = 6ps(1 - p); a4 = 4p5(1 - p ) ;  a5 = 6p(l- P)~; 

a6 = -4p( 1 - p)’; a7 = 15p4( 1 - P ) ~ ;  ag = Sp4( 1 - P ) ~ ;  ay = 15p2( 1 - P)~; 
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Ul, = -5p2(1 - p)4; U11 = 20Py(1 - p)3; 4 1 2  = 4p6 + 2oP4(i - PI2; 413 = 
4(1- p ) 6  + 2oP2(1 - p)4; a14 = 2oP5(1 - p )  + 4op3(i - P ) ~ ;  = 20p3(1 - P), + 
io&- p ) ;  u16 = 4op3( 1 - P ) ~  + 2oP( 1 - p)5; aI7 = -2oP3( 1 - p13 - iop(i - p)5; 

PI3 + 20P(l- P)5. 

a18 = 40p4(i - p)’ + 40pz( 1 - P ) ~ ;  a19 = 5ph + 40p4(1 - P)’ + 30p2(1 - 
a,, = 30p4( 1 - p)’ + 40p2( 1 - 

The d coefficients are as follows: 

+ 5( 1 - P ) ~ ;  = 20p5( 1 - p) + 60p3(1 - 

d 1 - ,  - 6 d 2 -  - 6a; d3 = 5+a; d4 = 5-a; d5 = 1+5u; d6 = 1-Sa; d7 = 4+20; 

d - 3+ 3a; d12 = 4; d13 = 40; d14 = 3 +  a; d15 = 3 -  a; 

d,, = 2u; d,, = 1 + a. 

d 8 = 4 - 2 a ;  d y = 2 + 4 a ;  

d,, = 1 + 3a; d17 = 1 - 3a; d18 = 2 + 2a; d1, = 2; 
- 2-  4u; d I, - 11 - 

Appendix 2 

The coefficients in equation (8) are given explicitly below. 
The e coefficients are as follows: 
e, = 5; ez = 5cr; e3 = 4+ a; e - - 4 - 4; e5 = 1 +4a; e6 = 1 -4a; e, = 3+ 2a; 

e8 = 3 - 2a; ey = 2 + 3a; 
- 2 - 3a; e - 3; e,, = 3a; eI3 = 2 + a; eI4 = 2 - a; eI5 = 1 + 2a; el, - I t  - 

eI6 = 1 - 2a; eI7 = 1; eI8 = a. 
The b coefficients are as follows: 
b, = p5; 6, = (1 - p) 5. , b 3 - 5  - p 4 (1 - p); b4 = 3p4(1 - p); bs = 5p(l-  P ) ~ ;  

b, = -3p( 1 - P ) ~ ;  b7 = 10p3(l - p)’; b8 = 2p3( 1 - p)’; by = lopz( 1 - p),; 
b,, = -2p2( 1 - P ) ~ ;  b,, = 3p5 + n p 3 (  1 - p): b,, = 31 1 - P ) ~  + 12p2( 1 - p),; 

b,, = 12p4(1-p)+18pz(1-p)3; b,, = 4p4(1-p)+6pZ(1-p)3; blS = I ~ P ( ~ - P ) ~ +  
lS~~(1-p)’ ;  b16 = - 4 ~ ( l - p ) ~ - 6 p ~ ( l - p ) ~ ;  b17 = 2 p 5 + 6 p ( l - p ) 4 + 1 2 p 3 ( 1 - p ) 2 ;  
b,, = 2( 1 - p) + 6p4( 1 - p) + 12p2(1 - P ) ~ .  

The c coefficients are as follows: 
c1 = p5; q = (1 - p)’; c3 = 5p4(1 - p) = c4; cS = 5p(l - P ) ~  = c,; 

o, = 1oP3( 1 - p), = c8; cg = lop2(  1 - P ) ~  = cl,; 
cll = sP5 + 2oP3(1 - p)2; clz  = 5(1 - p)5 + 2oP2(1 - p)3; Cl3 = 20p4(1 - 

p )  + 30p2(1 - p)’ = c14; C I S  = 20p(l - P ) ~  + 30p3(l - P)’ = ~ 1 6 ;  ~ 1 7  = 
lop5 + 30p( 1 - + 60p3( 1 - p)’; cl8 = IO( 1 - p)’ + 30p4( 1 - p) -I- 60p2(1 - P ) ~ .  
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